Regulatory Compliance

Staffing Shortages During Emergencies: A Crisis for Water Treatment Professionals 

Water Emergency

In the world of water treatment, maintaining a consistent and trained staff is crucial. Clean water is a fundamental necessity for health, safety, and economic well-being. However, when emergencies strike and staffing levels are already strained, the consequences can be dire. For example, in 2022, water treatment plants in Jackson were facing severe staffing challenges, prompting local officials to implement emergency measures. The city had to approve the hiring of contract workers from Los Angeles-based WaterTalent LLC to supplement the workforce at the O.B. Curtis and J.H. Fewell treatment plants, tanks, and well facilities. 

When there is a lack of staffing at water treatment facilities, several challenges arise: overworked staff, delayed maintenance, and increased risk of contamination, to name a few. With fewer hands on deck, there is also a higher likelihood of oversights, which can lead to contamination and public health risks. Also, emergencies, whether they are natural disasters like floods or hurricanes or human-made crises, exacerbate staffing challenges. 

Possible Solutions 

While the challenges are significant, several strategies can be employed to mitigate staffing shortages, especially during emergencies: 

  1. Cross-Training: Training staff in multiple roles ensures that, in times of shortages, personnel can perform a variety of tasks, ensuring that essential functions are not neglected. 
  2. Temporary Staffing Agencies: Contracting with agencies that specialize in water treatment professionals can provide a quick boost in staffing during critical times. 
  3. Remote Monitoring: Implementing technology that allows for remote monitoring and control can ease the need for on-site staff. 
  4. Community Partnerships: Collaborating with neighboring municipalities or private entities can provide mutual aid in times of need. 
  5. Emergency Protocols: Having a clear, regularly updated, and rehearsed emergency plan ensures that, when a crisis hits, the team knows how to respond swiftly and effectively. 

While the importance of water treatment professionals cannot be overstated, neither can the challenges they face, especially during emergencies compounded by staffing shortages. As our reliance on clean, safe water remains paramount, so does the need for investment in the professionals and systems that ensure its consistent delivery. With strategic planning and a focus on both immediate and long-term solutions, municipalities can navigate these challenges and ensure the health and safety of their communities. 

Sources: AP News

Green Desalination

Water testing

A few weeks ago we covered research published in the Society of Petroleum Engineers’ Journal of Petroleum Technology that laid out the possibilities of mining rare earth minerals from Produced Water, a byproduct of oil and gas production. This week we delve into a company that’s betting on the profitability of another toxic byproduct: Desalination brine. The combination of high operational costs, environmental impact, and the logistical challenges associated with brine disposal has limited the widespread adoption of desalination technology, especially in regions where cheaper alternatives are available. The surge in desalination as a solution to global water shortages has brought about environmental concerns, particularly regarding the energy-intensive processes involved and the disposal of brine byproducts.  
 
However, a pioneering initiative by the startup Capture6 is set to redefine the narrative by integrating carbon capture technology with seawater desalination efforts, promising a sustainable future for both water supply and carbon reduction. Desalination plants, crucial for supplying fresh water in drought-prone regions, face criticism for their environmental impact, notably the production of brine—a toxic byproduct harmful to marine ecosystems—and significant energy consumption contributing to greenhouse gas emissions. The challenge is twofold: supplying fresh water sustainably and mitigating the carbon footprint of such essential operations. Capture6’s venture, dubbed Project Octopus, presents an innovative approach to these challenges. The project, to be piloted in South Korea, aims to capture carbon dioxide from the air using brine from desalination processes. This not only offers a method to reduce the carbon footprint but also tackles the issue of brine disposal by turning it into a resource for carbon sequestration. Furthermore, the process yields an additional supply of fresh water, addressing the water scarcity problem head-on. 

Project Octopus leverages a liquid sorbent derived from the salt in desalination brine to react with atmospheric CO2, producing a stable, limestone-like compound that securely locks away the carbon. This synergy between desalination and direct air capture (DAC) technology could revolutionize how industries perceive and manage their waste, transforming it from an environmental liability into a valuable asset in the fight against climate change. Despite the potential benefits, the energy requirements for DAC and desalination are considerable, with current operations largely dependent on fossil fuels. The environmental viability of such projects hinges on advances in energy efficiency and the transition to renewable energy sources to power these processes. Critics and researchers alike emphasize the importance of ensuring that the net impact of integrated facilities like Project Octopus is a reduction in overall emissions and not merely a redistribution of environmental burdens. 

The ambition of Capture6, supported by collaborations with South Korean water utility K-water and wastewater treatment company BKT, reflects a growing recognition of the need for multidisciplinary solutions to climate and water challenges. While the pilot project’s scale is modest, its aim to expand significantly by 2026 illustrates the potential for scalable solutions that can have a meaningful impact on carbon reduction and water reclamation. Capture6’s innovative integration of carbon capture with desalination waste treatment stands as a beacon of how technology can bridge the gap between industrial necessities and environmental stewardship. As this and similar projects progress, they offer hope for sustainable practices that can simultaneously address the urgent needs for clean water and carbon reduction. For water treatment professionals, this represents a burgeoning field ripe with opportunities for innovation, collaboration, and leadership in environmental conservation. 

ResourcesWaterWorldThe Verge

The Silent Threat in Our Pipes: Getting Started with Lead Service Line Replacement 

For many water treatment professionals, the focus lies on what goes into the treatment plant, not necessarily what comes out the other side. But aging infrastructure within city limits can pose a hidden danger: lead service lines. These lead pipes, once a common material, can leach lead into drinking water, causing serious health problems, especially for children and pregnant women. 

According to the Environmental Protection Agency (EPA), an estimated 9.2 million lead service lines (LSLs) serve water to properties in communities across the United States. In order to meet the Biden-Harris Administration’s goal of replacing 100% of LSLs, here’s a proactive approach to conducting lead service line replacement (LSLR) and tackling the silent threat in our drinking water. 

Prioritize Lead Service Line Inventory and Replacement: 

A crucial first step is creating a comprehensive map of lead service lines within your city. Utilize public records, ground penetrating radar, and resident surveys to identify these potential hazards.  Develop a data-driven plan for lead service line replacement, prioritizing high-risk areas and vulnerable populations. 

Grant Opportunities and Public-Private Partnerships: 

Replacing lead service lines can be a significant financial burden. Explore federal and state grants specifically dedicated to lead service line replacement programs. Additionally, consider public-private partnerships with local businesses or foundations to share the costs and expedite the process. 

Community Outreach and Education: 

Educate residents about the dangers of lead in drinking water and how to identify lead service lines in their homes. Provide clear and transparent information on the replacement process, financial assistance programs, and steps to minimize lead exposure while lead lines are still present. 

Lead service lines are a public health concern that demands immediate action. By prioritizing inventory and replacement, exploring funding opportunities, and educating the community, water treatment professionals can play a critical role in safeguarding the health of U.S. citizens. Let’s work together to ensure every tap delivers lead-free, clean water. 

For more information and financial resources for tackling your city’s LSLR, visit the EPA’s website

SOURCE: EPA, Whitehouse.gov 

Addressing Saltwater Intrusion: A Technical Perspective

Salt Water Intrusive

Water treatment technicians, tasked with safeguarding the quality of our aquatic resources, are facing a subtle yet significant threat in the Mississippi River. Beyond the familiar challenges presented by the sea, an insidious issue arises: the progressive intrusion of saltwater into the delta. 

Due to long lasting drought upstream, saltwater is moving up the Mississippi River. The denser saltwater flows underneath the less dense freshwater, creating a two-level flow pattern in a wedge-shaped formation. The saltwater wedge is pushed upstream by the tides and by the prevailing winds. The Mississippi River is primarily a freshwater river, so the intrusion of saltwater is likely to be highly detrimental for local drinking water and infrastructure.  

Currently the Army Corps of Engineers has constructed underwater sills on the river at a number of locations, including near Head of Passes, Louisiana. Underwater sills are typically constructed of rock or concrete and are placed across the riverbed. They are designed to slow the upstream movement of saltwater by increasing the resistance to flow. The Corps also operates a number of reservoirs on the river that allow it to release fresh water to combat the intrusion, but these are not permanent solutions.  

The good news is the distance required for saltwater to cause problems in the Mississippi’s infrastructural water intakes is quite far, likely tens to hundreds of miles. However, the salinity of the saltwater is a critical factor. Generally, freshwater sources like the Mississippi River have low salinity, so even a small increase in salt content due to seawater intrusion can have adverse effects on drinking water quality and the infrastructure that relies on freshwater for local towns and cities. Aside from drinking water and infrastructure concerns, saltwater intrusion can also have detrimental effects on the local ecosystems, aquatic life, and vegetation that depend on freshwater. Salt can also slowly corrode pipes, making this a potentially long-lasting infrastructural problem. 

In addressing the challenge, both the government of Louisiana and the Army Corps are shifting their focus towards substantial initiatives. This includes the potential implementation of reverse osmosis units to extract salt from drinking water, the construction of a 55-foot-tall underwater levee to impede the encroachment of the saltwater wedge, and a rather bold strategy involving the transportation of millions of gallons of freshwater downstream to alleviate salt overload in water systems. 

From maintaining reverse osmosis units to supervising the structural integrity of the proposed underwater levee and managing freshwater transportation logistics, the expertise of technicians is crucial. These expert contributions ensure the efficacy of these interventions and pave the way toward innovation, resilience, and safeguarding our communities against the nuanced threat of saltwater intrusion. Through strategic, targeted efforts, we can protect our water systems, maintaining their safety and functionality amidst this lurking challenge.