Regulatory Compliance

Navigating the Silver Tsunami: The Aging Workforce in the Water Treatment Industry

Senior Water Analyst

The water treatment industry, vital for ensuring the safety and availability of one of our most crucial resources, is facing a demographic challenge that could impact its future sustainability and efficiency. Known as the “Silver Tsunami,” the aging workforce in this sector poses significant hurdles for hiring qualified professionals in the coming years. This article delves into the implications of this trend and explores strategies to mitigate potential risks. 

The water industry, like many other sectors, is experiencing a wave of retirements as baby boomers exit the workforce. A 2020 survey by the Water Environment Federation (WEF) indicated that a significant portion of the workforce is nearing retirement age. This scenario is set against a backdrop of increasing demand for water treatment services, driven by a growing population and heightened environmental concerns. 

The departure of experienced workers means not just a reduction in numbers, but a substantial loss of institutional knowledge and specialized skills unique to water treatment. Newer employees must be trained not only in the latest technologies but also in the nuanced, site-specific knowledge that departing workers possess. Moreover, the industry is already grappling with challenges in attracting younger workers who often overlook this sector in favor of more high-profile technological fields. 

Filling the void left by retiring professionals is not a straightforward task. The water treatment industry requires a combination of technical skills, regulatory knowledge, and practical experience. However, there is a noticeable gap in these skill sets among younger workers. Additionally, the industry has struggled to effectively market itself to millennials and Gen Z, who are more driven by career paths offering technological advancement and sustainable development opportunities. 

To effectively navigate the challenges posed by the aging workforce in the water treatment industry, a multi-faceted approach towards future workforce development is essential. This includes investing in enhanced training programs that not only provide comprehensive technical knowledge but also facilitate mentorship and the transfer of invaluable insights from seasoned professionals to newcomers. Equally crucial is the collaboration with educational institutions, such as universities and technical schools, to develop curricula that align with the specific needs of the industry, thus creating a steady flow of graduates who are ready to tackle job responsibilities.  

Additionally, there’s a pressing need to rebrand water treatment careers, highlighting them as not just vital and rewarding, but also as roles at the forefront of technological advancement and environmental sustainability. Leveraging modern technology, particularly virtual and augmented reality, in training methodologies can attract tech-savvy younger generations and make the learning process more efficient. Furthermore, implementing diversity and inclusion initiatives can enhance the sector’s appeal to a broader range of young professionals. Finally, offering competitive compensation, clear career pathways, and emphasizing the stability and long-term prospects in the water treatment sector are essential strategies to attract and retain the new generation of workers. These concerted efforts are pivotal in ensuring that the industry remains robust and capable of adapting to evolving challenges and innovations. 

The aging workforce in the water treatment industry is a pressing issue that requires immediate and strategic action. By investing in training, collaborating with educational institutions, rebranding the industry, and embracing diversity and technology, we can ensure a steady influx of skilled professionals. These efforts will not only address the workforce gap but also propel the industry forward, adapting to new challenges and innovations in the field. 

Citations: (1) Water Environment Federation. (2020). Workforce Survey Report. 

Drinking Water Contamination Incidents: Is Your PR Team Ready?

City Water Contamination

Most water treatment professionals are used to the day-to-day analysis of water and maintenance that comes with the job. Howbeit, not all are prepared for a drinking water contamination incident such as E.coli. Is your team ready to respond when an emergency strikes?

Unfortunately, this topic hits close to home for me. As a resident of Tyler and customer of TWU, I was quick to learn about a boil notice issued by the City of Tyler for E.coli contamination, and of course, was mildly horrified. The boil notice didn’t last long, though; the city lifted it the following day at 11 am. After talking with other residents and customers of TWU, to my surprise, this was not the first time the city has had water quality issues. Feeling concerned, I reached out to the City and asked if it was normal after E.coli detection in a water sample to only have a 24-hour boil notice for customers?

The City of Tyler released this statement:

“It is not normal for us to have a water sample test positive for E.coli.  We take dozens of samples everyday at various points around the City. Those samples got to the North East Texas Public Heath Regional Laboratory in Tyler to be tested according to TCEQ requirements.  

The boil water notice had to be issued  as the result of a single routine sample site tested showing the presence of e. coli, followed by a repeat sample at the same site in Central Tyler showing the presence of total coliform. E. coli was only found in one sample site out of many tested.   

Tyler water meets and exceeds all State and Federal standards. Our water system is safe.”

Famed environmental activist, Erin Brockovich, has long expressed concerns over the safety of the city’s water. In 2015, responding to another TWU water contamination incident, she posted on Facebook that the City was downplaying the incident. City officials were quick to respond to her post, “Our drinking water is the No. 1 priority of this department,” Assistant City Manager Susan Guthrie said. “We followed exactly what TCEQ requires us to do.”

No matter your opinion on the safety of Tyler’s water, the fact remains that the city was quick to respond in both situations. When disaster strikes, water facilities need to be prepared to react assuredly and quickly to ease customers’ minds. To avoid being caught unprepared, the EPA offers this guidance on how to react in situations like these. The City of Tyler followed the guidance of The Distribution System Contamination Response Procedure (DSCRP) outlined by the EPA, does your facility have a plan in place to do the same?

Sources: EPA.govCity of TylerTyler Morning Telegraph

Next-Gen Water Treatment: Cutting-Edge Tech for a PFA-Proof Plant

Staying ahead of contaminants and ensuring the delivery of safe, clean water to the public is a paramount challenge. As populations grow and industrial activities increase, the demand for high-quality water intensifies, making advanced water treatment technologies more critical than ever. Two pivotal advancements in this domain are water quality monitoring and membrane technology, both offering significant benefits and practical solutions for water treatment.

While traditional methods like chlorine disinfection have served us well, according to a 2023 study by the U.S. Geological Survey, at least 45% of the nation’s tap water contains one or more per- and polyfluorinated alkyl substances (PFAS), also known as “forever chemicals”. These emerging threats, alongside stricter government regulations, are fueled by urgency and demand a multi-pronged approach.

Water Quality Monitoring: The First Line of Defense

Effective water quality monitoring is essential for detecting contaminants and ensuring compliance with safety standards. Modern monitoring systems leverage real-time data and advanced sensors to provide continuous insights into water quality parameters such as pH, turbidity, and contaminant levels. Integrating these advanced monitoring systems means more proactive and efficient management of water resources, enabling swifter response to anomalies. Practical advice for implementation includes:

  • Invest in Integrated Systems: Choose systems that offer seamless integration with existing infrastructure and provide comprehensive data analytics.
  • Prioritize Training: Ensure staff are adequately trained to interpret data and respond swiftly to any anomalies.
  • Regular Maintenance: Schedule regular maintenance and calibration of monitoring equipment to maintain accuracy and reliability.

Continuous, real-time water quality monitoring can be a crucial edge for treatment facilities, providing a more complete picture of water conditions and allowing for better informed water management decisions and real-time public transparency.

Membrane Technology: New Frontiers in Filtration

Imagine a microscopic barrier so selective it allows water molecules to pass through while rejecting everything else. That’s the magic of membrane filtration, inspired by nature’s semi-permeable membranes in plant cells. Membrane technology has revolutionized water treatment by providing highly effective filtration solutions. These technologies, including reverse osmosis (RO), ultrafiltration (UF), and nanofiltration (NF), can remove a wide range of contaminants, from large particulates to dissolved salts and organic molecules.

For practical application of these technologies, consider the following:

  • Select Appropriate Membranes: Choose membranes based on the specific contaminants present in your water source and the desired water quality.
  • Optimize Operational Parameters: Regularly monitor and adjust parameters such as pressure and flow rate to maximize efficiency and lifespan of the membranes.
  • Implement Regular Cleaning Protocols: Establish routine cleaning and maintenance schedules to prevent fouling and ensure consistent performance.

By embracing advanced water quality monitoring and membrane technology, water treatment professionals can not only meet today’s challenges but also future-proof their systems for a cleaner, safer tomorrow.

SOURCE: CDC, AWWA

Something’s Rotten in the State of California

Tijuana Sewage Crisis

Over the last few years in the heart of the United States-Mexico border region, an international crisis has been steadily gaining momentum, casting a shadow of concern over communities on both sides. The Tijuana River sewage crisis has thrust water treatment professionals into a pivotal role in safeguarding public health and the environment. 

For years, the Tijuana River Valley has grappled with sewage pollution. However, recent developments have elevated this issue into a full-blown crisis. Last Tuesday, California Senators Alex Padilla and Dianne Feinstein called on the senate to fund the river’s clean up in an upcoming emergency funding bill, which includes $4 Billion for border issues, as well as $24 Billion for Ukraine and 12 billion for FEMA.

As Tijuana’s population grows, its aging water treatment infrastructure simply cannot keep up with the trash and sewage, as well as heavy rainfall events that can overwhelm the system. Contaminated waters from the Tijuana River flow from Mexico into the United States, affecting San Diego County in California. The sewage pollution in the Tijuana River brings with it an array of health risks. Exposure to harmful. pathogens, toxins, and pollutants in these contaminated waters can lead to a variety of health issues, particularly for those residing near the affected areas. This crisis not only jeopardizes the well-being of residents, but also poses a grave threat to coastal ecosystems, including delicate estuaries and the vast Pacific Ocean. 

Governor of California Gavin Newsom has also asked President Joe Biden to free up $300 million of the estimated $650 million it will take to solve the problem; however, he stopped short of declaring an official emergency. “I want to thank President Biden, U.S. EPA, and the IBWC for their commitment to move this critical project forward on expedited timelines. This has been an issue that San Diego communities have dealt with for far too long. It’s an important step forward that the work on this critical project will finally begin.” Newsom said in a Press Release Friday. 

Sources: CA.govThe San Diego Union-Tribune

Energy Efficiency in Water Treatment

Water Purification Equipment

In the realm of water treatment, energy efficiency is not just an operational concern; it’s an economic imperative. With the sector accounting for a significant portion of municipal energy usage, water treatment professionals are increasingly focusing on innovative strategies to reduce this footprint. This article explores key approaches to enhance energy efficiency in water treatment facilities, referencing current studies and expert insights. Integrating renewable energy sources like solar and wind power into water treatment operations can drastically reduce reliance on traditional, non-renewable energy sources. According to the Environmental Protection Agency (EPA), renewable energy systems can help facilities achieve long-term cost savings while contributing to greenhouse gas reduction goals. Facilities across the globe, such as the Stickney Water Reclamation Plant in Illinois, have successfully implemented solar arrays, demonstrating the feasibility and benefits of this approach. 

Pumping systems are the primary energy consumers in water treatment plants. A study by the Electric Power Research Institute (EPRI) highlights that optimizing these systems through variable frequency drives (VFDs) and efficient pump design can lead to substantial energy savings. The California Energy Commission’s guide on energy efficiency in water utilities underscores the importance of regular maintenance and system upgrades to ensure optimal pumping efficiency. Implementing advanced process control and automation is a key strategy for energy optimization. Real-time monitoring and control systems can significantly enhance process efficiency, as evidenced by a case study published in the Journal of Water Process Engineering, which shows how automation led to energy savings in a wastewater treatment plant. These systems allow for the precise control of aeration, filtration, and other energy-intensive processes. 

Wastewater itself can be a source of energy too. Technologies like anaerobic digestion and thermal hydrolysis enable the extraction of biogas from sludge, which can be converted into electricity or heat. The Water Environment Federation (WEF) provides extensive resources on energy recovery options and their implementation in water treatment facilities. Energy efficiency can also be achieved through smart design of the facilities themselves. The American Council for an Energy-Efficient Economy (ACEEE) suggests that incorporating energy-efficient lighting, insulation, and HVAC systems can significantly reduce a facility’s energy demand. Educating staff about energy-saving practices is crucial. The Alliance to Save Energy emphasizes the role of employee engagement in promoting a culture of sustainability within utilities, leading to more conscientious energy use. 

The path to energy efficiency in water treatment facilities is multi-faceted, involving technological upgrades, process optimization, and a commitment to sustainability at all organizational levels. By adopting these strategies, facilities can not only reduce their operational costs but also contribute to broader environmental goals. As the sector continues to innovate, embracing energy efficiency will remain a key factor in its evolution, ensuring that water treatment processes are sustainable for future generations. 
 

SOURCES: EPAAtlas of the FutureEPRICalifornia Energy Commission

Water Week 2024: What’s in Store

village water fountain

Water Week 2024, commencing on April 7, 2024, presents a convergence
of professionals, policymakers, and advocates focused on tackling the water
sector’s most pressing challenges. With a diverse lineup of events spanning the
week, participants will engage in critical dialogues surrounding legislation,
regulatory hurdles, and innovative solutions for sustainable water management.

The highlight of Water Week, the National Water Policy Fly-In
on April 9, 2024, brings together 350 water sector professionals from across
the United States. Representatives from associations, public water utilities,
and policy experts will convene in Congressional office visits, advocating for
pivotal changes and increased federal support for water infrastructure. This
collective effort, spearheaded by leading organizations such as the National
Association of Clean Water Agencies (NACWA), the Water Environment Federation
(WEF), the Water Research Foundation (WRF), and the WaterReuse Association,
underscores the urgent need for addressing aging infrastructure, PFAS
regulation costs, and other critical issues facing the sector.

In addition to legislative advocacy, Water Week 2024
features events designed to engage and inform participants about the latest in
water research, policy, and operations. Notably, the Solar Eclipse Watch Party
and Community Cleanup on April 8, 2024, combines community service with a
unique astronomical event, fostering a sense of camaraderie among water
professionals. Meanwhile, the Onsite Water Reuse Summit, scheduled for April
10-11, 2024, promises insightful discussions on integrating science, policy, and
operational strategies for water reuse, featuring keynotes from industry
visionaries.

Another significant event, the WEFMAX, slated for April
10-12, 2024, in Alexandria, VA, facilitates an exchange of ideas, best
practices, and lessons learned among Water Environment Federation members. This
forum exemplifies the collaborative spirit essential for advancing the water
sector’s goals.

Moreover, the completion of the AlexRenew Tunnel marks a
milestone in efforts to protect Alexandria’s waterways. The open house on April
13, 2024, offers the public a rare opportunity to celebrate this achievement
and learn more about the innovative engineering behind it.

Central to Water Week’s agenda is the America’s Water
Affordability Imperative Congressional Briefing on April 10, 2024. This
briefing aims to shed light on the consequences of unaffordable water systems
and explore solutions to ensure no American is left without access to this
essential resource. The involvement of the Congressional Black Caucus, along
with opening remarks by Senator Alex Padilla and Congresswoman Lisa Blunt
Rochester, signifies the bipartisan importance of water affordability.

Water Week 2024 represents a concerted effort to elevate water issues on the national stage, advocating for robust funding, innovative research, and policy frameworks that support the sector’s resilience and sustainability. As professionals gather in Washington, D.C., their unified
voice emphasizes the critical role of water management in public health, environmental protection, and economic development. Through collaboration and advocacy, Water Week seeks to catalyze lasting solutions to the challenges that loom large over the water sector, ensuring a secure and sustainable water future for communities across the nation.

Resources:
WWD
Water Finance and Management

Breakthrough in Microplastics Monitoring: Affordable and Efficient Detection for Water Treatment Plants

Microplastics, tiny plastic fragments wreaking havoc on our ecosystems, are a growing concern. Detecting and managing these contaminants is crucial for maintaining water quality and safeguarding public health. A recent breakthrough from researchers at Nagoya University, in collaboration with the National Institute for Materials Sciences (NIMS) in Japan, promises to revolutionize microplastic monitoring with a method using porous metal substrates and machine learning to cheaply and effectively detect microplastics.

Here’s why this is a game-changer for water treatment professionals:

  • Faster, Cheaper Monitoring: This new method eliminates the need for expensive and time-consuming separation techniques. Imagine capturing and identifying six key microplastic types – polystyrene, polyethylene, and more – in one go.
  • Straightforward Analysis: The system utilizes a special light technique (surface-enhanced Raman spectroscopy) to analyze captured microplastics. The complex data is then deciphered by a machine learning algorithm called SpecATNet, ensuring accurate and swift identification.
  • Deployment-Ready for All Labs: The good news? This method is designed to be affordable and user-friendly. The materials required for the system bring cost savings of 90% to 95% compared to commercially available alternatives. This makes the method accessible even to resource-limited labs and facilities, democratizing the ability to monitor and manage microplastic pollution.

Key Takeaways for Water Treatment Professionals:

  • This innovation has the potential to revolutionize microplastics monitoring in water treatment plants.
  • Faster and more affordable detection methods can lead to better data on microplastic contamination, allowing for improved treatment strategies.
  • Widespread adoption of this technology can significantly contribute to safeguarding public health and our aquatic ecosystems.

The Future of Microplastics Monitoring

The researchers are continuously improving the system, aiming to broaden its detection range and compatibility with various data types. This paves the way for even more comprehensive microplastics monitoring in the future. SOURCE: Nature Communications

“Forever Chemicals” Proving to be Regulatory Nightmare

Analyst testing for PFAS in river

Much like the chemicals themselves, PFAS (per- and polyfluoroalkyl substances) continue to be a never-ending regulatory nightmare for agencies and states that wish to ban or limit the use of these substances. Known as “forever chemicals” due to their persistent nature in the environment, PFAS pose serious health risks, including cancer, liver disease, and fetal complications. These substances are found in a wide range of consumer products, from food packaging to firefighting foams, making their regulation a critical concern for water treatment professionals and public health advocates alike.

A notable case involved the Environmental Protection Agency’s (EPA) attempt to ban plastic containers manufactured by Houston-based Inhance, which were found to be contaminated with PFOA, a toxic PFAS compound. Despite the EPA’s December prohibition, the conservative fifth circuit court of appeals overturned the ban, citing that the EPA could not regulate the containers under the statute it used. The court’s decision highlighted the challenges in regulating existing industrial processes as “new” when they’ve been in use for decades. This ruling underscores the complexities of implementing PFAS regulations and the legal interpretations that can stall protective measures.

In Colorado, efforts to strengthen PFAS legislation by 2028 have been met with enthusiasm from environmental litigators and concern for public health. Senate Bill 24-081 aims to extend the ban on class B firefighting foam to other PFAS-containing products, reflecting the growing awareness of PFAS as a major public health threat. Environmental Litigation Group associate attorney Yahn Olson highlighted the difficulty of filtering PFAS from groundwater, emphasizing the chemicals’ association with severe health conditions. This legislative push in Colorado is part of a broader move towards stringent PFAS limits, with the EPA considering setting the threshold at 4 parts per trillion, signaling a shift towards recognizing any PFAS exposure as potentially harmful.

On a positive note, 3M, a Minnesota-based chemical manufacturer, has agreed to begin payments this summer to many U.S. public drinking water systems as part of a multi-billion-dollar settlement over PFAS contamination. This settlement, approved by the U.S. District Court in Charleston, South Carolina, signifies a significant step towards addressing PFAS contamination in drinking water. The payouts, ranging from $10.5 billion to $12.5 billion through 2036, reflect the company’s commitment to exit all PFAS manufacturing by the end of 2025. This move by 3M could serve as a precedent for other manufacturers, encouraging more comprehensive solutions to the PFAS challenge.

These developments illustrate the multifaceted approach states are taking to regulate PFAS, from legal battles to legislative reforms and settlements. Despite the challenges, the persistence of regulators, litigators, and lawmakers in addressing PFAS contamination highlights a collective effort to mitigate the environmental and health impacts of these hazardous chemicals. For water treatment professionals, these cases provide valuable insights into the evolving regulatory landscape and the ongoing efforts to ensure the safety of public water supplies from PFAS contamination.

Resources:
The Guardian
Longmont Leader
CBS News

EPA and White House Issue Warning on Cybersecurity in Water Infrastructure

cybersecurity, encryption

The EPA and the White House last week issued a joint warning about cyber-attacks on US infrastructure. This warning underscores a burgeoning threat that looms large over the country’s water utilities—a sector that is foundational yet increasingly vulnerable to these attacks. This warning sheds light on a complex tapestry of challenges and initiatives aimed at fortifying the nation’s water infrastructure against the specter of digital warfare, underscoring the vital importance of cybersecurity within this critical infrastructure sector.

The White House, through a concerted effort involving multiple agencies, has spotlighted the dire need for enhanced cybersecurity measures within the water sector. EPA Administrator Michael Regan and National Security Advisor Jake Sullivan have articulated concerns regarding the sector’s attractiveness as a target for cyberattacks, primarily due to its essential nature and the oftentimes limited resources and technical capacity to implement comprehensive cybersecurity practices. This vulnerability is not just theoretical; it has been manifest in numerous incidents, including attacks linked to state-sponsored entities from China and the Iranian Islamic Revolutionary Guard Corps (IRGC).

A particularly alarming aspect of these cyber threats is the targeting of water and wastewater systems, pivotal in ensuring the provision of clean and safe drinking water to communities. The administration has drawn attention to two specific groups: Volt Typhoon, associated with the Chinese government, and the Cyber Av3ngers, linked to the IRGC. These entities have not only infiltrated critical infrastructure but have also demonstrated the capability to disrupt essential services, highlighting a stark reality where cybersecurity lapses can lead to significant impacts on public health and safety.

In response to these looming threats, a multifaceted strategy has been unveiled, focusing on bolstering the sector’s digital defenses. This includes the formation of a water sector cybersecurity task force, aimed at identifying vulnerabilities and developing strategies to mitigate them. Furthermore, the administration has extended invitations to state officials for discussions on improving cybersecurity measures, alongside offering resources through both the EPA and the Cybersecurity and Infrastructure Security Agency (CISA). These efforts are indicative of a proactive stance, seeking to address and preempt the potential ramifications of cyberattacks on critical water infrastructure.

However, the path forward is not without its challenges. Past attempts to impose more stringent cybersecurity measures have faced legal and political pushback, illustrating the complex interplay between regulatory efforts and sector-specific realities. Despite these hurdles, the call for enhanced protections is underscored by a shared understanding of the critical nature of water utilities and the catastrophic potential of successful cyberattacks.

The dialogue between federal and state entities, as emphasized in recent communications, is a crucial step toward fostering a more secure and resilient water sector. By urging state governments to assess their current cybersecurity practices and engage in collaborative efforts to shore up defenses, the administration is advocating for a unified approach to safeguarding a vital component of the nation’s infrastructure.

For water treatment professionals, the message is clear: the threat landscape is evolving, and with it, the need for vigilance and proactive measures to protect against cyber intrusions. As the sector navigates these challenges, the emphasis on comprehensive cybersecurity practices, from basic measures like changing default passwords to more sophisticated strategies, becomes paramount. The ongoing efforts to secure the water sector not only reflect the importance of cybersecurity in maintaining public health and safety but also underscore the collective responsibility of all stakeholders to ensure the resilience of critical infrastructure against emerging threats.

Resources:
NextGov.com
CyberScoop.com
ArtsTechnica.com

Six Months Left to Comply with Lead and Copper Rule Revisions

Copper Sheets

Water utilities are on a tight deadline as the Environmental Protection Agency (EPA) prepares to enforce the Lead and Copper Rule Revisions (LCRR) by October 16, 2024. These revisions are designed to ensure the safety of drinking water and reduce lead exposure in communities across the United States. With six months left, it’s crucial to understand the key requirements and take necessary steps to comply with the rule. The LCRR builds on the original Lead and Copper Rule (LCR), established in 1991 to control the presence of lead and copper in drinking water.

The updated version, released in 2022, introduces significant changes aimed at better protecting communities from lead contamination. These changes were prompted, in part, by the Flint water crisis, where thousands of residents were exposed to lead poisoning from April 2014 to October 2015. The LCRR includes stricter requirements, expanded testing protocols, and mandatory lead service line replacement for many water systems.

Under the LCRR, public water systems must submit a comprehensive inventory of service line materials, identifying lead lines, galvanized lines requiring replacement, and unknown materials by the compliance deadline. This inventory is a critical step toward meeting regulatory requirements and mitigating lead exposure. The guidance provided by the EPA emphasizes the importance of transparency and communication with the public regarding the location and condition of lead service lines.

Additionally, the LCRR introduces new public notification requirements. In the event of a Lead Action Level exceedance, communitywide public notification must occur within 24 hours. This requirement underscores the urgency of addressing lead contamination and maintaining public trust. Stephen Estes-Smargiassi, chair of the American Water Works Association’s (AWWA) Lead and Copper Rule Advisory Committee, advises water utilities to proactively engage with public officials, media, and other stakeholders before starting the sampling process to avoid surprises and ensure clear communication.

The EPA has released several resources to help water systems comply with the LCRR. The Guidance for Developing and Maintaining a Service Line Inventory provides best practices, a template for creating inventories, and case studies to assist water systems in meeting the October 16 deadline. The Small Entity Compliance Guide, released in June 2023, is tailored to support small community and non-transient non-community water systems. Additionally, the EPA has hosted webinars to educate professionals on the revised rule and funding opportunities through programs like the Drinking Water State Revolving Fund (DWSRF) and the Bipartisan Infrastructure Law (BIL).

With six months remaining, water treatment professionals should focus on several key actions to ensure compliance with the LCRR:

1.       Develop a Comprehensive Service Line Inventory: This step involves identifying all lead and galvanized lines and creating a plan for replacement. The inventory must be submitted by October 16, 2024.

2.       Communicate with Stakeholders: Proactive communication with public officials, health departments, and community members is essential. Ensure that everyone is aware of the new requirements and the steps being taken to comply with the LCRR.

3.       Prepare for Public Notification Requirements: Establish a process for communitywide public notification within 24 hours of a Lead Action Level exceedance. This requires coordination with media outlets, public officials, and other stakeholders.

4.       Stay Informed and Utilize Available Resources: The EPA provides extensive guidance and resources to support compliance efforts. Take advantage of webinars, templates, and other materials to ensure compliance.

The clock is ticking, so it’s crucial to act now to ensure compliance by October 16, 2024.

Resources:
AWWA
EPA
OpenGov