Regulatory Compliance

Six Months Left to Comply with Lead and Copper Rule Revisions

Copper Sheets

Water utilities are on a tight deadline as the Environmental Protection Agency (EPA) prepares to enforce the Lead and Copper Rule Revisions (LCRR) by October 16, 2024. These revisions are designed to ensure the safety of drinking water and reduce lead exposure in communities across the United States. With six months left, it’s crucial to understand the key requirements and take necessary steps to comply with the rule. The LCRR builds on the original Lead and Copper Rule (LCR), established in 1991 to control the presence of lead and copper in drinking water.

The updated version, released in 2022, introduces significant changes aimed at better protecting communities from lead contamination. These changes were prompted, in part, by the Flint water crisis, where thousands of residents were exposed to lead poisoning from April 2014 to October 2015. The LCRR includes stricter requirements, expanded testing protocols, and mandatory lead service line replacement for many water systems.

Under the LCRR, public water systems must submit a comprehensive inventory of service line materials, identifying lead lines, galvanized lines requiring replacement, and unknown materials by the compliance deadline. This inventory is a critical step toward meeting regulatory requirements and mitigating lead exposure. The guidance provided by the EPA emphasizes the importance of transparency and communication with the public regarding the location and condition of lead service lines.

Additionally, the LCRR introduces new public notification requirements. In the event of a Lead Action Level exceedance, communitywide public notification must occur within 24 hours. This requirement underscores the urgency of addressing lead contamination and maintaining public trust. Stephen Estes-Smargiassi, chair of the American Water Works Association’s (AWWA) Lead and Copper Rule Advisory Committee, advises water utilities to proactively engage with public officials, media, and other stakeholders before starting the sampling process to avoid surprises and ensure clear communication.

The EPA has released several resources to help water systems comply with the LCRR. The Guidance for Developing and Maintaining a Service Line Inventory provides best practices, a template for creating inventories, and case studies to assist water systems in meeting the October 16 deadline. The Small Entity Compliance Guide, released in June 2023, is tailored to support small community and non-transient non-community water systems. Additionally, the EPA has hosted webinars to educate professionals on the revised rule and funding opportunities through programs like the Drinking Water State Revolving Fund (DWSRF) and the Bipartisan Infrastructure Law (BIL).

With six months remaining, water treatment professionals should focus on several key actions to ensure compliance with the LCRR:

1.       Develop a Comprehensive Service Line Inventory: This step involves identifying all lead and galvanized lines and creating a plan for replacement. The inventory must be submitted by October 16, 2024.

2.       Communicate with Stakeholders: Proactive communication with public officials, health departments, and community members is essential. Ensure that everyone is aware of the new requirements and the steps being taken to comply with the LCRR.

3.       Prepare for Public Notification Requirements: Establish a process for communitywide public notification within 24 hours of a Lead Action Level exceedance. This requires coordination with media outlets, public officials, and other stakeholders.

4.       Stay Informed and Utilize Available Resources: The EPA provides extensive guidance and resources to support compliance efforts. Take advantage of webinars, templates, and other materials to ensure compliance.

The clock is ticking, so it’s crucial to act now to ensure compliance by October 16, 2024.

Resources:
AWWA
EPA
OpenGov

Energy Efficiency in Water Treatment

Water Purification Equipment

In the realm of water treatment, energy efficiency is not just an operational concern; it’s an economic imperative. With the sector accounting for a significant portion of municipal energy usage, water treatment professionals are increasingly focusing on innovative strategies to reduce this footprint. This article explores key approaches to enhance energy efficiency in water treatment facilities, referencing current studies and expert insights. Integrating renewable energy sources like solar and wind power into water treatment operations can drastically reduce reliance on traditional, non-renewable energy sources. According to the Environmental Protection Agency (EPA), renewable energy systems can help facilities achieve long-term cost savings while contributing to greenhouse gas reduction goals. Facilities across the globe, such as the Stickney Water Reclamation Plant in Illinois, have successfully implemented solar arrays, demonstrating the feasibility and benefits of this approach. 

Pumping systems are the primary energy consumers in water treatment plants. A study by the Electric Power Research Institute (EPRI) highlights that optimizing these systems through variable frequency drives (VFDs) and efficient pump design can lead to substantial energy savings. The California Energy Commission’s guide on energy efficiency in water utilities underscores the importance of regular maintenance and system upgrades to ensure optimal pumping efficiency. Implementing advanced process control and automation is a key strategy for energy optimization. Real-time monitoring and control systems can significantly enhance process efficiency, as evidenced by a case study published in the Journal of Water Process Engineering, which shows how automation led to energy savings in a wastewater treatment plant. These systems allow for the precise control of aeration, filtration, and other energy-intensive processes. 

Wastewater itself can be a source of energy too. Technologies like anaerobic digestion and thermal hydrolysis enable the extraction of biogas from sludge, which can be converted into electricity or heat. The Water Environment Federation (WEF) provides extensive resources on energy recovery options and their implementation in water treatment facilities. Energy efficiency can also be achieved through smart design of the facilities themselves. The American Council for an Energy-Efficient Economy (ACEEE) suggests that incorporating energy-efficient lighting, insulation, and HVAC systems can significantly reduce a facility’s energy demand. Educating staff about energy-saving practices is crucial. The Alliance to Save Energy emphasizes the role of employee engagement in promoting a culture of sustainability within utilities, leading to more conscientious energy use. 

The path to energy efficiency in water treatment facilities is multi-faceted, involving technological upgrades, process optimization, and a commitment to sustainability at all organizational levels. By adopting these strategies, facilities can not only reduce their operational costs but also contribute to broader environmental goals. As the sector continues to innovate, embracing energy efficiency will remain a key factor in its evolution, ensuring that water treatment processes are sustainable for future generations. 
 

SOURCES: EPAAtlas of the FutureEPRICalifornia Energy Commission

EPA Ramps Up Cybersecurity Inspections for Water Utilities: What You Need to Know

In response to increasing cyber threats, the Environmental Protection Agency (EPA) has issued a critical warning to water utilities across the nation, revealing substantial gaps in cybersecurity compliance. According to the EPA’s recent enforcement alert, more than 70% of inspected water systems fail to meet essential security standards mandated by the Safe Drinking Water Act (SDWA). Common deficiencies include the use of default passwords and a lack of multi-factor authentication.

A Growing Threat

Cyber-attacks targeting water systems are on the rise. Notable incidents include Russian hacktivists disrupting water systems in Texas and Iranian-linked “CyberAv3ngers” defacing U.S. water infrastructure equipment. These attacks underscore the sector’s vulnerability and the urgent need for enhanced cybersecurity measures.

EPA’s Increased Enforcement Measures

To address these threats, the EPA is ramping up inspections and enforcement actions. Deputy Administrator Janet McCabe emphasized the agency’s commitment to protecting the nation’s drinking water from cyberattacks. The EPA’s plan includes:

  • Increased Inspections: More frequent checks of community water systems to ensure compliance with cybersecurity standards.
  • Civil and Criminal Actions: Potential enforcement actions against non-compliant systems, especially those posing imminent risks.
  • Risk and Resilience Assessments: Ensuring utilities conduct mandatory risk assessments and develop robust emergency response plans.

Legal and Regulatory Challenges

Efforts to mandate cybersecurity measures have faced opposition. A proposed EPA update introducing new cyber rules was halted by legal challenges from several states and water trade associations, who argued that the EPA overstepped its authority. In response, the Water Risk and Resilience Organization Establishment Act was introduced to create a dedicated federal regulatory body for cybersecurity in water systems, similar to the electric sector’s regulatory framework.

Collaboration and Future Steps

The EPA, along with the White House, has reached out to state governors, emphasizing the severity of cyber threats and the need for a coordinated response. A meeting with federal officials aims to bolster state-level awareness and readiness.

The EPA’s alert underscores the critical need for water utilities to prioritize cybersecurity, safeguarding public health and ensuring the resilience of essential services against evolving cyber threats. SOURCES: EPA, Smart Water Magazine

Drinking Water Contamination Incidents: Is Your PR Team Ready?

City Water Contamination

Most water treatment professionals are used to the day-to-day analysis of water and maintenance that comes with the job. Howbeit, not all are prepared for a drinking water contamination incident such as E.coli. Is your team ready to respond when an emergency strikes?

Unfortunately, this topic hits close to home for me. As a resident of Tyler and customer of TWU, I was quick to learn about a boil notice issued by the City of Tyler for E.coli contamination, and of course, was mildly horrified. The boil notice didn’t last long, though; the city lifted it the following day at 11 am. After talking with other residents and customers of TWU, to my surprise, this was not the first time the city has had water quality issues. Feeling concerned, I reached out to the City and asked if it was normal after E.coli detection in a water sample to only have a 24-hour boil notice for customers?

The City of Tyler released this statement:

“It is not normal for us to have a water sample test positive for E.coli.  We take dozens of samples everyday at various points around the City. Those samples got to the North East Texas Public Heath Regional Laboratory in Tyler to be tested according to TCEQ requirements.  

The boil water notice had to be issued  as the result of a single routine sample site tested showing the presence of e. coli, followed by a repeat sample at the same site in Central Tyler showing the presence of total coliform. E. coli was only found in one sample site out of many tested.   

Tyler water meets and exceeds all State and Federal standards. Our water system is safe.”

Famed environmental activist, Erin Brockovich, has long expressed concerns over the safety of the city’s water. In 2015, responding to another TWU water contamination incident, she posted on Facebook that the City was downplaying the incident. City officials were quick to respond to her post, “Our drinking water is the No. 1 priority of this department,” Assistant City Manager Susan Guthrie said. “We followed exactly what TCEQ requires us to do.”

No matter your opinion on the safety of Tyler’s water, the fact remains that the city was quick to respond in both situations. When disaster strikes, water facilities need to be prepared to react assuredly and quickly to ease customers’ minds. To avoid being caught unprepared, the EPA offers this guidance on how to react in situations like these. The City of Tyler followed the guidance of The Distribution System Contamination Response Procedure (DSCRP) outlined by the EPA, does your facility have a plan in place to do the same?

Sources: EPA.govCity of TylerTyler Morning Telegraph

DOE Announces $75 Million Investment in Desalination and Water Reuse Technologies

Water Reuse

The U.S. Department of Energy (DOE) has announced an additional $75 million in funding over the next five years for the National Alliance for Water Innovation (NAWI), a hub focused on desalination and water treatment innovation. This funding aims to continue the progress in developing technologies that reduce the cost and energy required for water purification. As part of its ongoing efforts, NAWI will address the escalating needs for modernized water infrastructure and improved access to potable water, aligning with the national goal of achieving net-zero emissions by 2050.

NAWI’s mission, supported by this funding, is to address the critical technical barriers that currently hinder the cost-effectiveness and energy efficiency of water purification technologies. By fostering collaborations among industry, government, and academic partners, NAWI aims to propel significant advancements in desalination technologies. These advancements are crucial for modernizing America’s water infrastructure, increasing access to clean, potable water, and aligning with the national goal of achieving a net-zero emissions economy by 2050.

The relevance of this initiative is magnified by the interconnectedness of water and energy systems. Water is essential for producing nearly every major energy source, and energy is indispensable for transporting and treating water. The integrated approach that the DOE is advocating through NAWI is designed to synergize efforts to decarbonize the water economy while ensuring secure water futures for communities across the nation.

For water treatment professionals, the focus of NAWI on piloting integrated energy-efficient and decarbonized water systems is particularly pertinent. This approach not only addresses the immediate needs of treating and delivering water but also emphasizes the reuse of various wastewaters. Such initiatives are vital in a landscape where traditional fresh water supplies are increasingly strained by environmental and demographic pressures.

Over the past five years, NAWI has already made significant strides by funding over 60 projects that span early-stage research to pilot-scale implementations. These projects have explored a range of innovative water treatment and desalination unit processes, automation technologies, and novel modeling tools and analysis. The outcomes from these projects have contributed to the development of the NAWI Master Roadmap and five sector-specific roadmaps addressing key challenges in desalination and the treatment of nontraditional source waters.

Looking ahead, NAWI 2.0 aims to deepen its impact by focusing on three primary challenges: Increasing the focus on piloting integrated systems that are not only energy-efficient but also geared towards decarbonization, emphasizing the reuse of a variety of wastewaters, which is increasingly recognized as critical for sustainable water management, convening stakeholders—including technology developers, water managers, and community representatives—to optimize water supply management through collaborative innovation.

This strategic direction promises to open new avenues for technological development and implementation in the water treatment sector. Water treatment professionals will need to adapt to and engage with these emerging technologies, which will require a combination of technical expertise and strategic thinking. The ability to integrate new processes into existing frameworks, to innovate within regulatory and economic constraints, and to anticipate future water quality challenges will be key to leveraging the opportunities presented by NAWI’s initiatives.

Furthermore, NAWI’s extensive community, comprising 108 Research Consortium member organizations and over 424 Alliance Organizations, provides a robust network for collaboration and knowledge exchange. This network is an invaluable resource for professionals looking to stay at the forefront of water treatment technology.

The DOE’s renewed funding for NAWI represents a significant commitment to transforming the landscape of water treatment in the United States. For water treatment professionals, this initiative not only challenges them to innovate but also offers a platform to significantly influence the future of sustainable water management.

Resources:
Department of Energy

AI and Water Treatment

AI potential in water

Most people by now are familiar with artificial intelligence writing and data analysis tools like ChatGPT, even if they haven’t used it themselves, but AI is also making a splash in industrial jobs as well. You may be surprised to know that the integration of AI into water treatment facilities is already transforming the industry. No longer a fictitious foe for a science fiction plot, AI now promises to provide solutions to some of the most pressing challenges faced by water treatment professionals today. 

AI has already made significant inroads into daily operations within the water treatment industry. One of the most prominent applications is in the optimization of treatment processes. Machine learning algorithms can analyze vast datasets, identifying patterns that human operators might miss. This capability allows for the adjustment of chemical dosing in real-time, minimizing waste and improving treatment efficacy. 

Moreover, AI is instrumental in predictive maintenance. By monitoring the performance data from equipment, AI can predict when a pump might fail or when a filter needs replacement before it causes a system-wide issue. This not only prevents downtime but also extends the lifespan of critical infrastructure. 

AI’s role in monitoring water quality is perhaps one of its most crucial applications. Sophisticated sensors coupled with AI algorithms are being used to detect contaminants at levels previously undetectable. This technology provides an unprecedented level of detail about water composition, enabling treatment plants to respond to issues swiftly and effectively.As AI technology advances, its potential applications within water treatment continue to grow. One emerging area is the use of AI in managing water distribution networks. AI systems can optimize the flow of water throughout these networks, reducing energy consumption and ensuring that water pressure remains consistent across all service areas. 

Another exciting development is the use of AI-driven robotics for underwater inspections and repairs. These AI-assisted robots can perform tasks in environments that are hazardous to human divers, such as in toxic water conditions or in areas with restricted access, largely reducing the risks of human operators in emergency scenarios. Furthermore, AI is being leveraged to tackle the global issue of water scarcity. Through advanced data analytics, AI helps in water loss management by detecting leaks and anomalies in the system that human surveillance might not capture. 

While the benefits are substantial, integrating AI into water treatment systems is not without its challenges. One concern that has reared its head in recent months is cybersecurity. As water treatment plants become more connected, the potential for cyberattacks increases. Ensuring that AI systems are secure from such threats is paramount. Another consideration is the fiscal cost. While AI can save money in the long run, the initial investment can be draining to smaller operations.  

Additionally, there is a need for skilled personnel who can manage and interpret AI systems. This necessitates ongoing education and training for water treatment professionals to keep pace with technological advancements. 

In the water treatment industry, artificial intelligence is no longer just a futuristic concept; it’s a present-day reality. With its ability to analyze and learn from data, AI is helping professionals make smarter decisions, reduce costs, and improve water quality. As the technology continues to evolve, so will its applications, offering new tools to address the growing demand for clean and safe water worldwide AI offers a wellspring of opportunities for water treatment professionals.  

Sources: WSPNatureScience DirectAuto Desk

Breakthrough in Microplastics Monitoring: Affordable and Efficient Detection for Water Treatment Plants

Microplastics, tiny plastic fragments wreaking havoc on our ecosystems, are a growing concern. Detecting and managing these contaminants is crucial for maintaining water quality and safeguarding public health. A recent breakthrough from researchers at Nagoya University, in collaboration with the National Institute for Materials Sciences (NIMS) in Japan, promises to revolutionize microplastic monitoring with a method using porous metal substrates and machine learning to cheaply and effectively detect microplastics.

Here’s why this is a game-changer for water treatment professionals:

  • Faster, Cheaper Monitoring: This new method eliminates the need for expensive and time-consuming separation techniques. Imagine capturing and identifying six key microplastic types – polystyrene, polyethylene, and more – in one go.
  • Straightforward Analysis: The system utilizes a special light technique (surface-enhanced Raman spectroscopy) to analyze captured microplastics. The complex data is then deciphered by a machine learning algorithm called SpecATNet, ensuring accurate and swift identification.
  • Deployment-Ready for All Labs: The good news? This method is designed to be affordable and user-friendly. The materials required for the system bring cost savings of 90% to 95% compared to commercially available alternatives. This makes the method accessible even to resource-limited labs and facilities, democratizing the ability to monitor and manage microplastic pollution.

Key Takeaways for Water Treatment Professionals:

  • This innovation has the potential to revolutionize microplastics monitoring in water treatment plants.
  • Faster and more affordable detection methods can lead to better data on microplastic contamination, allowing for improved treatment strategies.
  • Widespread adoption of this technology can significantly contribute to safeguarding public health and our aquatic ecosystems.

The Future of Microplastics Monitoring

The researchers are continuously improving the system, aiming to broaden its detection range and compatibility with various data types. This paves the way for even more comprehensive microplastics monitoring in the future. SOURCE: Nature Communications

EPA Imposes First Limits on PFAS

Polluted Water with PFAs

The U.S. Environmental Protection Agency (EPA) this week introduced new national drinking water standards, marking a significant regulatory step to limit exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS), commonly known as “forever chemicals.” These substances, which have been linked to various health risks including cancer and liver disease, are notoriously persistent in the environment and human body. Under the new regulations, six types of PFAS—PFOA, PFOS, PFNA, PFHxS, GenX chemicals, and additional combinations—are now subject to stringent limits due to their health risks. The EPA has set the maximum contaminant levels (MCLs) at 4 parts per trillion for PFOA and PFOS, and 10 parts per trillion for PFNA, PFHxS, and GenX chemicals.

This regulatory action follows mounting evidence of PFAS’ adverse health impacts, such as increased risks of kidney and liver cancer, immune system damage, and developmental issues in children. The EPA’s decision aims to reduce these health risks by enforcing lower contamination levels and requiring public water systems to undertake significant testing and treatment if levels exceed these new standards.

The implementation of these limits is expected to impact between 6% to 10% of the nation’s public water systems, translating to a need for upgrades and treatment technologies across approximately 4,100 to 6,700 systems. This undertaking underscores the EPA’s commitment to public health, with anticipated benefits including the prevention of thousands of deaths and serious illnesses.

To support the compliance with these new standards, the EPA has allocated significant funding, notably $1 billion from the 2021 federal infrastructure law. This funding aims to assist states, territories, and public water systems in implementing PFAS testing and treatment solutions. Additional financial support has stemmed from litigation against PFAS manufacturers, including a notable settlement where companies like 3M have agreed to pay billions to affected water providers.

While these new regulations represent a critical step towards safeguarding drinking water, they also highlight ongoing challenges. The treatment and monitoring of PFAS are costly and complex, and the financial burden may ultimately be passed onto consumers, especially in smaller communities with fewer resources. 

These actions are part of a broader effort by the EPA to tackle environmental contaminants and ensure cleaner, safer water for all Americans. As the agency continues to expand its oversight and regulation of PFAS, further measures and funding will likely be necessary to address the pervasive challenges posed by these chemicals in the environment.

Resources:
NBC
AP
NPR

Cybersecurity: Israeli-made Components Become a Target for Hackers

Hackers, Cyber Attack

The critical importance of cybersecurity in water treatment facilities has come into sharp focus lately with a slew of attacks in just a few weeks. Worldwide there have been multiple instances of cyberattacks targeting these essential services, underscoring the need for enhanced digital defenses for our most precious resources. These incidents not only highlight the vulnerabilities of water systems to cyber threats but also the evolving nature of these digital threats. 

Just days ago on December 7th, a water treatment plant in the Irish city of Erris faced a cyberattack that left about 180 residences without water for two days. This attack was linked to the use of equipment from Israeli companies, targeted by a group believed to be from Iran called CyberAv3ngers. In the U.S., the Municipal Water Authority of Aliquippa, Pennsylvania, also experienced a breach by this group, which managed to control a device at a remote water station. 
 
The CyberAv3ngers, a group believed to be linked to Iran’s Islamic Revolutionary Guard Corps, is engaging in cyberattacks on critical infrastructure, including water treatment facilities, as part of a broader geopolitical strategy. Their actions appear to be motivated by the desire to undermine Israel, by targeting entities using Israeli-made equipment. It appears these attacks are not just about causing immediate disruption but are also part of a larger messaging effort to influence international perceptions and exert geopolitical pressure.  

These incidents underscore the challenges water treatment facilities face in securing critical infrastructure. The CyberAv3ngers’ attacks, though not known for their sophistication, demonstrate the vulnerability of facilities that neglect basic security measures. Furthermore, the U.S. Environmental Protection Agency (EPA) has been scrutinized for insufficient resources and personnel to adequately address these cybersecurity challenges. 

The Biden administration announced plans to improve the digital defenses of public water systems earlier this year, with a focus on industry accountability. This includes novel rules placing more responsibility for securing water facilities at the state level. However, experts like Mark Montgomery, former executive director of the Cyberspace Solarium Commission, criticize these measures as inadequate, pointing out that both the EPA and states lack the necessary resources. The water treatment industry also expressed concerns, with the American Water Works Association highlighting practical problems in the government’s approach. 

The incidents revealed technical vulnerabilities, such as poor security practices and outdated software. For example, the breach in Pennsylvania exploited poor security practices, including an exposed device to the internet and weak password protocols. Cybersecurity experts recommend not only patching these vulnerabilities but also adopting robust security measures like multi-factor authentication and regular security audits. In this digital age, cybersecurity is an integral component of water treatment operations. Facilities must stay abreast of the latest threats and ensure that their systems are fortified against potential breaches. This includes regular updates to security protocols, employee training in cybersecurity best practices, and collaboration with government agencies for guidance and support. 

The recent cyberattacks on water treatment plants in Ireland and the U.S. serve as a wake-up call for the industry. As cyber threats evolve, so must the strategies to combat them. This requires a concerted effort from both the government and the water treatment industry to invest in stronger cybersecurity measures, enhance employee training, and develop more resilient infrastructure. The safety and reliability of water services depend on the industry’s ability to adapt and respond to these digital threats effectively. 

Sources: CyberScoopReutersWestern People

The Importance of Innovation in the Water Industry: Overcoming Reluctance to Adopt New Technologies

Water treatment professionals take pride in reliability, stability – qualities that ensure our communities receive the lifeblood they deserve. But clinging to “tried and true” methods in the face of growing challenges could be a recipe for disaster. Innovation is not just a buzzword—it’s a necessity. Yet, despite the clear benefits, the adoption of new technologies often faces significant reluctance in the industry. Understanding and overcoming this resistance is crucial for advancing the industry and ensuring sustainable water management.

The Innovation Imperative

Innovation in the water industry is driven by the need to address immense, growing challenges such as water scarcity, aging infrastructure, and emerging contaminants. Technologies such as advanced filtration systems, real-time water quality monitoring, and AI-driven predictive maintenance can revolutionize water treatment processes, promising to enhance efficiency, reduce costs, and improve water quality for all. However, many professionals remain hesitant to transition from established methods to these cutting-edge solutions. Let’s explore how to overcome resistances to the implementation of water treatment innovation.

Overcoming Reluctance

  1. Education and Training: A significant barrier to adopting new technologies is the lack of knowledge and skills. Providing comprehensive training programs and resources can empower your team to understand and effectively utilize new tools. Continuous professional development should be a priority to keep up with technological advancements.
  2. Pilot Projects: Implementing pilot projects allows you to test new technologies on a smaller scale before full-scale adoption. This approach helps in assessing the feasibility, benefits, and potential challenges without committing extensive resources upfront.
  3. Collaborative Innovation: Foster a culture of collaboration within your organization and the wider industry. Partnerships with technology providers, research institutions, and other water utilities can facilitate knowledge exchange and joint problem-solving.
  4. Demonstrating ROI: Clear evidence of return on investment (ROI) can alleviate concerns about the costs of new technologies. Case studies and data showcasing successful implementations can be persuasive.

The Way Forward

Embracing innovation in the water industry is not without its challenges, but the benefits far outweigh the risks. By fostering an environment that encourages learning, collaboration, and evidence-based decision-making, water treatment professionals can lead the way in creating a sustainable future. Remember, the water industry’s evolution depends on your willingness to innovate. Let’s move forward, together, towards a more efficient and resilient water system.