Regulatory Compliance

New Study Finds PFAS Contamination Threatens Rural Latinx Communities 

New research from UC Berkeley reveals that public water wells in rural, predominantly Latinx communities may be disproportionately affected by PFAS (per and polyfluoroalkyl substances) contamination. 

These PFAS, or “forever chemicals,” are linked to various health risks and have been widely used in industries and consumer products for decades. The EPA recently set limits for PFAS in drinking water, and traditional water monitoring is missing the mark. Current methods fail to consider pesticides as a potential source of PFAS contamination. This study, a first of its kind, highlights a gap in our water safety net, particularly for rural communities. 

Key Takeaways for Water Treatment Professionals: 

  • PFAS from Pesticides: This research suggests a new pathway for PFAS to enter drinking water sources. Be aware of potential PFAS presence in areas with high agricultural activity. 
  • Environmental Justice Concerns: Rural, Latinx communities may be at greater risk due to reliance on small water systems and historical exposure to environmental hazards. Expanding PFAS monitoring to these areas is crucial. 
  • The Need for Proactive Measures: Water treatment professionals should consider including PFAS testing in their protocols, especially for clients in at-risk areas. Partnering with local organizations serving rural and minority communities can be a powerful step towards ensuring equitable access to safe drinking water. 
  • The Future of PFAS and Water Safety: The UC Berkeley researchers are continuing their work with a follow-up study that will directly test wells in vulnerable communities. This ongoing research will provide valuable data to guide future regulations and treatment strategies. 

By staying informed about emerging contaminants like PFAS and prioritizing environmental justice, water treatment professionals can play a key role in safeguarding public health. 

A Simple Solution to Microplastics?

Water sample contaminated with microplastics

Recent research has unveiled a surprisingly straightforward method for mitigating nano- and microplastics (NMPs) contamination in drinking water, an issue increasingly plaguing our water supplies. This method, which aligns well with the principles of simplicity and cost-effectiveness desired in water treatment processes, involves the mere act of boiling calcium-rich tap water and subsequently filtering it. Such a procedure, as highlighted in a study published in ACS’ Environmental Science & Technology Letters, demonstrates the potential to eliminate nearly 90% of NMPs from water.

NMPs, varying in size from a mere one-thousandth of a millimeter to as large as 5 millimeters, are omnipresent in various environments, including water, soil, and air. The health implications of these particles are a growing concern, particularly their potential impact on the human gut microbiome. While advanced filtration systems exist that can tackle NMPs, the quest for accessible, inexpensive solutions is critical for widespread application and significant reduction in human plastic ingestion.

The innovative approach explored by researchers Zhanjun Li, Eddy Zeng, and their team hinges on the interaction between boiling water and the calcium compounds typically found in hard tap water. Their experiments, conducted with tap water samples from Guangzhou, China, involved spiking the water with NMPs, boiling it for five minutes, and allowing it to cool before assessing the remaining plastic content. They discovered that boiling facilitates the formation of calcium carbonate (CaCO3) incrustants, which encase the plastic particles, allowing them to be subsequently removed either through natural sedimentation or by a simple filtration step, like using a coffee filter.

This encapsulation process is particularly effective in hard water, where higher levels of calcium carbonate are present. The research indicated that in water samples containing 300 milligrams of CaCO3 per liter, up to 90% of NMPs could be removed post-boiling. Remarkably, the method still had efficacy in softer water samples, achieving a reduction of around 25% of NMPs.

For water treatment professionals, the implications of this research are profound yet implementable. This method presents a scalable, low-cost strategy that can be integrated into existing water treatment frameworks, especially in regions with hard water. It could serve as a preliminary treatment step, reducing the load on more advanced and expensive filtration systems downstream. The scalability of this method could be enhanced by adapting existing infrastructure to include boiling and filtration stages specifically designed for NMP removal.

Moreover, this approach encourages further exploration into the relationship between water hardness and other water treatment methodologies, potentially unveiling more such straightforward, efficient solutions. It also underscores the importance of interdisciplinary research, combining principles from chemistry, environmental science, and engineering to tackle pressing environmental health issues.

The study provides a promising avenue for water treatment professionals to explore, offering a simple, cost-effective, and scalable method to significantly reduce NMPs in drinking water. Its integration into existing water treatment protocols could not only enhance the efficiency of removing contaminants but also contribute to the broader goal of safeguarding public health and preserving the integrity of our water resources. As the fight against plastic pollution intensifies, simple solutions like this will be crucial in shaping the future of water treatment and environmental stewardship.

Resources: Environmental Science & Technology

EPA and White House Issue Warning on Cybersecurity in Water Infrastructure

cybersecurity, encryption

The EPA and the White House last week issued a joint warning about cyber-attacks on US infrastructure. This warning underscores a burgeoning threat that looms large over the country’s water utilities—a sector that is foundational yet increasingly vulnerable to these attacks. This warning sheds light on a complex tapestry of challenges and initiatives aimed at fortifying the nation’s water infrastructure against the specter of digital warfare, underscoring the vital importance of cybersecurity within this critical infrastructure sector.

The White House, through a concerted effort involving multiple agencies, has spotlighted the dire need for enhanced cybersecurity measures within the water sector. EPA Administrator Michael Regan and National Security Advisor Jake Sullivan have articulated concerns regarding the sector’s attractiveness as a target for cyberattacks, primarily due to its essential nature and the oftentimes limited resources and technical capacity to implement comprehensive cybersecurity practices. This vulnerability is not just theoretical; it has been manifest in numerous incidents, including attacks linked to state-sponsored entities from China and the Iranian Islamic Revolutionary Guard Corps (IRGC).

A particularly alarming aspect of these cyber threats is the targeting of water and wastewater systems, pivotal in ensuring the provision of clean and safe drinking water to communities. The administration has drawn attention to two specific groups: Volt Typhoon, associated with the Chinese government, and the Cyber Av3ngers, linked to the IRGC. These entities have not only infiltrated critical infrastructure but have also demonstrated the capability to disrupt essential services, highlighting a stark reality where cybersecurity lapses can lead to significant impacts on public health and safety.

In response to these looming threats, a multifaceted strategy has been unveiled, focusing on bolstering the sector’s digital defenses. This includes the formation of a water sector cybersecurity task force, aimed at identifying vulnerabilities and developing strategies to mitigate them. Furthermore, the administration has extended invitations to state officials for discussions on improving cybersecurity measures, alongside offering resources through both the EPA and the Cybersecurity and Infrastructure Security Agency (CISA). These efforts are indicative of a proactive stance, seeking to address and preempt the potential ramifications of cyberattacks on critical water infrastructure.

However, the path forward is not without its challenges. Past attempts to impose more stringent cybersecurity measures have faced legal and political pushback, illustrating the complex interplay between regulatory efforts and sector-specific realities. Despite these hurdles, the call for enhanced protections is underscored by a shared understanding of the critical nature of water utilities and the catastrophic potential of successful cyberattacks.

The dialogue between federal and state entities, as emphasized in recent communications, is a crucial step toward fostering a more secure and resilient water sector. By urging state governments to assess their current cybersecurity practices and engage in collaborative efforts to shore up defenses, the administration is advocating for a unified approach to safeguarding a vital component of the nation’s infrastructure.

For water treatment professionals, the message is clear: the threat landscape is evolving, and with it, the need for vigilance and proactive measures to protect against cyber intrusions. As the sector navigates these challenges, the emphasis on comprehensive cybersecurity practices, from basic measures like changing default passwords to more sophisticated strategies, becomes paramount. The ongoing efforts to secure the water sector not only reflect the importance of cybersecurity in maintaining public health and safety but also underscore the collective responsibility of all stakeholders to ensure the resilience of critical infrastructure against emerging threats.

Resources:
NextGov.com
CyberScoop.com
ArtsTechnica.com

America’s Aging Water Infrastructure: A Critical Call for Renewal and Investment

Water Infrastructure

Water treatment professionals have a vital role in addressing the pressing concerns surrounding the nation’s deteriorating water infrastructure. Hidden beneath the urban landscape, a significant portion of this infrastructure is nearing the end of its service life, necessitating urgent attention to avert a crisis. The deterioration of these systems has resulted in numerous problems.  

According to the American Society of Civil Engineers (ASCE), the United States needs to invest $743 billion in water infrastructure over the next decade to meet current and future needs, saying in a 2022 statement “Without significant investment, the nation risks losing the environmental, public health, and economic gains made over the last 40 years.” 

Much of the United States’ water infrastructure was constructed in two primary waves: first, in the early to mid-20th century to accommodate growing urban populations, and then in the post-World War II era, during a period of significant suburban expansion and economic growth. These systems, now several decades old, were designed with a service life that is now reaching or has surpassed its end. This has led to a host of problems, including increased frequency of water main breaks, lead leaching from old pipes into drinking water, and inefficiencies in water treatment and distribution that can result in the loss of billions of gallons of water each year. 

So, what can be done? 

Addressing the decrepit state of the water infrastructure necessitates a three-pronged strategy. Primarily, there’s a need for substantial investments in the repair and replacement of outdated systems, a move that promises to enhance water quality and mitigate risks associated with leaks and other infrastructure failures. Meanwhile, there is a surge in developing cutting-edge technologies that promise to revolutionize the water treatment and distribution sectors. Innovations such as smart water meters are pivotal in the early detection of leaks, significantly curtailing water waste. Finally, and perhaps most importantly, a concerted effort must be made to educate the public on the critical nature of our water infrastructure. Raising awareness about the potential consequences of neglect could foster broader community support like, for example, the passionate response of the public to Flint’s Lead Pipe Crisis or the failure of the Jackson, Mississippi water treatment plant.   

In the capacity of guardians of public health, those in the water treatment profession bear a significant responsibility. It is up to you to lead the charge in advocating for substantial investments in water infrastructure renewal. By doing so, we can ensure the provision of safe, reliable water services, which is fundamental to the health and well-being of our communities. 

Sources: ASCEThe Nation

PFAS Contamination: A Costly Crisis with a Path to Recovery 

The EPS’s new PFAS standards are a welcome step in safeguarding public health. However, these regulations place a significant financial burden on water utilities tasked with implementing the necessary PFAS mitigation measures. Let’s delve into the substantial costs associated with PFAS removal and explore a critical solution: holding polluters accountable. 

The High Price of Clean Water 

  • Treatment Costs: From monitoring to installing and maintaining treatment systems, water utilities face potential expenditures in the billions. 
  • Unequal Burden: Unfortunately, smaller, rural communities are likely to face the greatest financial challenges in affording these essential upgrades. 

Beyond Public Funds 

The Bipartisan Infrastructure Law (BIL) allocates funds for water infrastructure improvements, but only a designated portion is specifically earmarked for PFAS remediation. 

Moving towards a more sustainable solution requires looking beyond solely relying on public funds. Here, the ‘polluter pays’ principle takes center stage. 

Polluter Pays: Holding Manufacturers Responsible 

  • Lawsuits are Proving Effective: A growing number of municipalities are taking legal action against PFAS manufacturers, and these lawsuits are yielding significant results, with billions secured for clean-up efforts. 
  • Recent Settlements: Companies like DuPont, 3M, and Tyco Fire Products have offered settlements exceeding $14 billion. 

What You Can Do 

  • Check Your Eligibility: Public water systems can claim compensation from the multi-district litigation (MDL) settlements even if they did not participate in the initial proceedings. 
  • Stay Informed: New lawsuits and settlements are continually emerging, and there’s a strong likelihood that more manufacturers will be held responsible. 

PFAS mitigation is a costly endeavor, but water utilities do not have to shoulder this burden alone. Litigation against polluters serves as a powerful tool to recover financial resources needed for clean-up. Public water systems should actively pursue all available avenues to secure safe drinking water for their communities without placing an undue financial strain on ratepayers. 

By holding polluters accountable, we can pave the way for a more equitable and sustainable solution to the PFAS crisis. 

SOURCE: Water World 

World Water Day: How Far We’ve Come

World Water Day

World Water Day is coming up on March 22, 2024, marking 31 years since its beginning in 1993. At that time about 60% of the world’s population had access to clean water. A mere three decades later that number has risen to 75%, an increase including billions of people worldwide. Today we delve into the advancements in technology, policy, and community engagement that have propelled forward the accessibility of safe water, transforming lives and ecosystems across the globe. 

One of the most notable advancements in the quest for universal access to clean drinking water has been the development and deployment of low-cost and accessible technologies. From solar-powered water purification systems to portable, cheap filtration devices, innovation has been at the forefront of tackling water scarcity and contamination issues. For instance, reverse osmosis and UV purification systems have become more affordable and efficient, enabling their use in remote and resource-limited settings. These technologies not only purify water but also do so in a sustainable manner, aligning with global efforts to combat climate change. 

Another significant technological breakthrough has been the advent of real-time water quality monitoring systems. These systems employ sensors and remote communication technologies to provide instant data on water safety, allowing for prompt action to prevent contamination. Such advancements have revolutionized the way water quality is managed, ensuring safer drinking water for communities worldwide. 

Parallel to technological innovations, there have been substantial policy and infrastructure improvements aimed at expanding access to clean water. International agreements and national policies have increasingly recognized water as a fundamental human right, leading to more targeted and coordinated efforts to address water scarcity and pollution. The United Nations’ Sustainable Development Goals (SDGs), particularly Goal 6, have galvanized global action to ensure availability and sustainable management of water and sanitation for all by 2030. 

Governments and international organizations have ramped up investments in water infrastructure, from the construction of modern treatment facilities to the rehabilitation of aging pipelines and sewage systems. These investments have been critical in expanding access to clean water, particularly in urban areas where the demand for safe water continues to grow. 

Advances in access to clean drinking water have also been driven by increased community engagement and education. Grassroots movements, non-governmental organizations (NGOs), and local governments have played pivotal roles in raising awareness about water issues, advocating for policy change, and implementing community-based water projects. Education programs focusing on water conservation, hygiene, and sanitation have empowered communities to take an active role in managing their water resources, leading to sustainable water use practices and improved public health outcomes. 

Community-driven water projects, such as rainwater harvesting and the restoration of traditional water systems, have demonstrated the power of local knowledge and participation in achieving water security. These initiatives often incorporate traditional practices with modern technologies, creating resilient and adaptable water management systems.  
 
Despite the progress made, challenges remain in ensuring universal access to clean drinking water. Population growth, political instability, and industrial pollution continue to strain water resources, highlighting the need for continued innovation and collaboration. The water treatment industry plays a crucial role in this endeavor, offering expertise, technologies, and solutions to address the complex challenges of water scarcity and contamination. 

As we move forward, the integration of advanced technologies, robust policy frameworks, and community involvement will be critical in overcoming these challenges. The water treatment industry must continue to innovate, not just in terms of technological solutions but also in how these solutions are implemented and scaled globally. Collaboration across sectors and disciplines will be essential in ensuring that the advances made in the last thirty years serve as a foundation for a future where access to clean drinking water is a reality for all. The strides made towards improving access to clean drinking water over the last thirty years represent a remarkable achievement, but the battle is far from over. For water treatment professionals, the task ahead is not just about sustaining the momentum but accelerating it, ensuring that the next decades are marked by even greater achievements in providing safe, accessible water to every corner of the globe. 
 

Resources: WSJNatGeoOur World in Data

Microplastics: Macro Problems

Plastics in Ocean

In the evolving landscape of water treatment, the emergence of microplastics as a contaminant has become a pressing concern for professionals in the field. As particles smaller than five millimeters, microplastics’ pervasive presence in global water supplies is not only an environmental issue but also a public health challenge. This article delves into the multifaceted approach water treatment professionals are adopting to navigate the challenges and solutions in removing microplastics from water supplies.

Recent studies have highlighted the ubiquity of microplastics in various water sources, including rivers, lakes, and even tap water. Originating from a variety of sources such as cosmetic products, clothing fibers, and larger plastic debris that degrades over time, these particles have been found to carry toxic substances, posing potential risks to aquatic life and human health.

One of the primary challenges in tackling microplastics is their detection. Traditional water treatment processes are not designed to capture particles as small and varied as microplastics. The lack of standardized methods for monitoring and quantifying these particles further complicates efforts to assess and manage their presence in water supplies.

In response to this challenge, water treatment professionals are exploring a range of innovative solutions. Advanced filtration techniques, such as membrane filtration and biofiltration, have shown promise in capturing microplastics. Research into nanotechnology and magnetic separation methods also offers potential pathways for more effective removal processes.

Moreover, the development of bio-based solutions, utilizing microorganisms that can degrade or assimilate microplastics, represents an exciting frontier in water treatment technology. These solutions not only aim to remove microplastics but also to convert them into harmless or even beneficial materials.

Amid these technological advances, the regulatory landscape concerning microplastics is still in its infancy. Some countries have begun to establish guidelines for monitoring microplastics in water sources, but a global consensus on acceptable levels and standardized testing methods remains elusive. Water treatment professionals are actively participating in discussions and research to inform policy development and ensure that water quality standards evolve to address this emerging contaminant effectively.

Collaboration among researchers, technology developers, policymakers, and the water treatment community is crucial for advancing the fight against microplastics. Sharing knowledge and best practices, as well as fostering public awareness of the sources and impacts of microplastics, are vital components of a comprehensive strategy to reduce their presence in water supplies.

As water treatment professionals continue to navigate the challenges posed by microplastics, their role in safeguarding public health and environmental integrity has never been more critical. The path forward will require a sustained commitment to innovation, collaboration, and education. By harnessing emerging technologies and advocating for informed policy measures, the water treatment community can make significant strides in mitigating the impact of microplastics on our water and our world.

The issue of microplastics in water supplies presents a complex challenge that demands a multifaceted response. Through continued research, technological innovation, and collaborative efforts to shape effective regulations, water treatment professionals are at the forefront of ensuring that our water remains safe for generations to come.

Resources:
EPA
WHO

Smart Water Technology: 5 Smart Water Management Solutions

Engineer montioring wastewater

Smart water management solutions use data visibility to aid in the planning, development, and distribution of your wastewater operations and water usage. Evaluating your specific needs and requirements is key when selecting a water management software solution to optimize water resource management.

When selecting a smart water solution for real-time automated monitoring and reporting, look for a software platform that offers management apps and tools to help you and your team meet water management compliance requirements. And look for platforms that give you and your team visibility into real-time performance, organized reporting, auditing, centralized sampling, and compliance.

Here are some renowned approaches and technologies in the smart water management sector to assist your team in enhancing water distribution, minimizing leaks, and boosting overall system efficiency. These solutions also contribute to effective mapping and management of water networks.

  1. Integrated Software Platforms: Some platforms offer a comprehensive suite of applications and tools designed for smart water management. These platforms cover various aspects including GIS mapping, asset management, IoT and remote monitoring, and real-time event management.
  2. AI-Driven Water Management: There are advanced platforms utilizing AI to monitor and control the performance of water and wastewater infrastructure. These systems provide real-time data monitoring, predictive analytics, and automation, helping you optimize water distribution, reduce energy consumption, and improve operational efficiency.
  3. Remote Monitoring Solutions: Certain solutions specialize in remote monitoring and control of wastewater networks. They provide end-to-end solutions and software platforms for managing data from wastewater networks and remote field assets. These platforms enable real-time data collection, integrated analytics, and automated reporting, aiding in water quality and flow rate monitoring while streamlining operations.
  4. Acoustic-Based Monitoring: Acoustic monitoring solutions are available for water infrastructure, aiding professionals in leak detection, pipe condition assessment, and maintenance prioritization. By promptly identifying and addressing issues, these solutions enhance system reliability and minimize water loss.
  5. Advanced Data Analytics Platforms: Various smart water solutions exist that include advanced monitoring and data analytics software. These platforms collect and analyze data from sensors, meters, and other sources, providing insights for better decision-making. They support water quality, pressure, and flow rate monitoring while optimizing resource allocation.

By exploring and adopting these smart water management strategies, your team can work towards a more efficient and reliable water distribution system.

Benefits of Smart Water Technology 

Real-time data: Access to real-time data on water quality, flow rates, pressure, and other parameters, allowing professionals to monitor and respond promptly to anomalies or issues.

Improved efficiency: Automation and predictive analytics help optimize resource allocation, reduce energy consumption, and enhance overall operational efficiency.

Leak detection and prevention: Advanced monitoring software can detect leaks and help professionals prioritize repairs, minimizing water loss and reducing non-revenue water.

Asset management: Integrated asset management tools enable professionals to monitor the condition of infrastructure, prioritize maintenance activities, and extend the lifespan of water assets.

Enhanced decision-making: By utilizing data analytics and advanced reporting capabilities, professionals can make informed decisions to optimize processes, allocate resources efficiently, and improve water system performance.

Real-time water use measurements, efficient water use that minimizes non-revenue water costs, and sensible maintenance are just some of the benefits of smart water technology that you and you water facilities management team can realize when implementing smart water technology.

White House Announces Nearly $6 Billion for Water Infrastructure

Water Infrastructure

This week the Biden administration announced a $5.8 billion investment towards improving the nation’s ailing water infrastructure, part of the bipartisan 2021 legislation allocating $50 billion for water infrastructure enhancements. These funds aim to address the critical needs of modernizing drinking water systems and wastewater management across the country. The American Society of Civil Engineers (ASCE) has long highlighted the deteriorating state of U.S. water systems, assigning a C- rating to drinking water infrastructure and a D+ to wastewater systems in 2021. This situation underscores the urgent need for comprehensive upgrades to safeguard public health and ensure environmental sustainability.  

The allocated funds will facilitate projects to eliminate lead pipes, enhance water treatment processes, and expand access to safe drinking water, particularly in underserved communities. The initiative not only focuses on replacing hazardous lead service lines but also addresses the challenges posed by climate change, such as saltwater intrusion and increased sediment and pollutant runoff, which compromise water quality and availability. 

The federal government’s strategy involves distributing funds through the Clean Water and Drinking Water State Revolving Fund programs, allowing states, territories, and tribes to prioritize and manage projects according to their specific needs. This decentralized approach ensures that the unique water infrastructure challenges of each region can be addressed effectively, from the urban centers grappling with lead contamination to rural areas facing water scarcity. 

However, the endeavor to revamp the nation’s water infrastructure is not without its complexities. Past efforts, like those in Flint, Michigan, have demonstrated the risks associated with transitioning water sources and the dire consequences of inadequate corrosion control measures. Flint’s crisis, where elevated blood lead levels were discovered in residents due to corroded pipes, is a stark reminder of the critical need for continued investment in water treatment and distribution. 

Eastern Kentucky emerges as a real-life example, underscoring the urgent need for infrastructure renewal. A story from Lexington NPR station WEKU earlier this week highlights that the region, already accustomed to dealing with water issues, faced unprecedented hardship following a historic flood in 2022 that devastated drinking water systems. This catastrophe revealed the true fragility of our aging infrastructure, with some systems relying on pipes that are 70 to 100 years old. The situation illustrates the broader challenges faced nationwide in ensuring reliable access to clean water amidst both natural disasters and aging facilities. 

The commitment demonstrated by this bipartisan bill shows, at the least, an across-the-aisle acknowledgment of the rapidly crumbling infrastructure in both urban and rural areas. For water treatment professionals, this significant federal investment presents an opportunity to address decades old concerns like lead pipes and rural access, as well as modernizing treatment processes to keep beautiful clean water flowing for all Americans.  
 

Resources: ABC NewsCNNWEKU

Gear Up for PFAS: New EPA Limits Reshape Your Treatment Landscape 

Water Analysis for PFAs in River

Heads up, water pros! The EPA just dropped a game-changer for municipal water treatment. Their new guidelines on Per- and Polyfluoroalkyl Substances (PFAS) – those “forever chemicals” plaguing our water sources – are here, and they’re setting stricter limits than ever before

As guardians of your city’s tap water, you know the importance of keeping contaminants at bay. These new regulations raise the bar for PFAS removal, impacting how we approach treatment at the source. 

The Specifics 

The EPA is cracking down on five specific PFAS compounds: PFOA and PFOS (with a limit of 4 parts per trillion) and PFHxS, PFNA, and HFPO-DA (at 10 parts per trillion). These levels are ridiculously tiny – imagine a single drop in 20 Olympic pools! But for public health, every part matters. 

The good news: the EPA recognizes the challenge. They’ve identified proven methods like activated carbon filtration, reverse osmosis, and ion exchange as effective against PFAS. Additionally, the Bipartisan Infrastructure Law has allocated a $10 billion to help cities upgrade their treatment capabilities. 

Time to Strategize: What’s Next for Your Plant? 

The compliance deadline is five years from now, giving you time to assess your current system’s PFAS removal efficiency. Here’s your action plan: 

  • Explore Treatment Options: Evaluate the efficiency of existing methods and research new technologies specifically designed for PFAS removal. Pilot testing different options will help you find the best fit for your plant’s needs and budget. 

The Bottom Line: A Collaborative Effort for Safe Water 

These new guidelines are a win for public health, but they require a united front from water treatment professionals. By working closely with the EPA and leveraging available resources, we can ensure that every city resident has access to clean, PFAS-free tap water. Remember, you’re the frontline heroes, and with these new guidelines, you have the tools to deliver the ultimate victory: safe drinking water for all.