One Man’s Trash is a Literal Goldmine
The old trope of “One man’s trash is another man’s treasure” is usually reserved for things like antique furniture on the side of the road or perhaps an old Marantz record player at an estate sale. However invaluable treasure is lurking in a substance long considered to be a nuisance among oil and gas producers. Recent research spearheaded by Dr. Hamidreza Samouei at Texas A&M University has brought into focus an unexpected resource in wastewater management — the potential to mine valuable minerals and metals from produced water, the wastewater brought to the surface along with oil and gas during drilling which often contains dissolved minerals, salts, and other chemicals. This revelation could reshape our approach to water treatment and resource recovery, presenting both opportunities and challenges for the industry.
Produced water, often seen as a relatively useless and dangerous waste byproduct in oil and gas operations, is rich in minerals and elements. Samouei’s research, highlighted in the Society of Petroleum Engineers’ Journal of Petroleum Technology, reveals that produced water contains nearly every element in the periodic table, including critical minerals like lithium, rubidium, cesium, and gallium, vital for advancing technology industries. More common minerals like sodium and potassium are also abundant, offering lucrative prospects for recovery and use in various industries.
The primary challenge in tapping into this resource is the cost of treating vast volumes of produced water, which is traditionally viewed as waste and disposed of through subsurface injections. The global annual volume of produced water exceeds 240 billion barrels, with Texas alone accounting for a significant portion. The perception of produced water as a waste product, rather than a resource, poses a significant barrier to exploring its potential.
Samouei proposes a novel approach using CO2 desalination to mine these minerals. This groundbreaking technique involves a series of filtration methods, including ultrafiltration, nanofiltration, and reverse osmosis, to extract valuable minerals in stages before treating the water for other uses. This process not only offers an environmentally friendly solution to deal with produced water but also turns it into a source of revenue.
Despite the potential, significant research and development are needed to make this process commercially viable. Currently, government and private funding for mineral recovery is focused on more traditional sources, like the sea floor or even asteroids. Dr. Samouei’s research aims to redirect this focus closer to home, highlighting the economic and environmental benefits of mining produced water.
Transforming the oil and gas industry’s view of produced water from a waste product to a valuable resource requires a shift in perception and investment. Dr. Samouei envisions a future where produced water serves as a key player in the industry’s mining operations, providing essential minerals for various sectors and contributing positively to environmental sustainability.
The potential of mining minerals from produced water offers a dual benefit — addressing the environmental challenge of wastewater management while unlocking a new source of valuable minerals. As research progresses and perceptions shift, this approach could revolutionize the way we view and utilize produced water. For water treatment professionals, this presents an exciting frontier, one that promises not only to tackle waste management challenges but also to contribute to a circular economy, where every drop of water and its hidden minerals are optimally used.
Resources: Water Online, Neo Water treatment, IWA Publishing